Shimming and MRS

Ivan Tkac

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA Email: ivan@cmrr.umn.edu

Adjustment of the static magnetic field homogeneity, commonly known as the B_0 shimming or simply shimming, is essential for magnetic resonance spectroscopy because it determines the spectral resolution which is critical for reliable metabolite quantification. Inhomogeneities in the B_0 field, resulting primarily from susceptibility differences between air and tissue, are scaled with the B_0 field and become highly non-linear at ultra-high magnetic fields. Although efficient minimization of the B_0 inhomogeneity in the whole human brain is extremely difficult especially at high fields, successful results were recently achieved at 7T by using shim coils up to the 3^{rd} order [1]. The B_0 field is usually most distorted in prefrontal regions due to its close proximity to the sinuses. Different techniques have been proposed in combination with active shimming to minimize strong local inhomogeneities including localized shim coils [2,3], diamagnetic and paramagnetic passive shims [4-6] and dynamic shimming [7].

In general, successful shimming requires efficient shimming methods for mapping the B_0 field variations over the region of interest as well as a shim system (coils and drivers) which is strong enough to compensate these field gradients. Methods developed for B_0 field mapping can be grouped into two categories; methods based on 3D B_0 mapping [8-10] and B_0 mapping along projections [11-15]. In both types of shimming techniques, information about the B_0 field variation is calculated from phase differences acquired during the evolution of the magnetization in a non-homogeneous field. The precision of the B_0 field mapping. Longer evolution times increase sensitivity to small B_0 changes and allow a fine adjustment of shims. However, longer evolution times when the B_0 field homogeneity is poor, typically in the beginning of the shimming process. Therefore, methods utilizing multiple evolution times are preferable [13,8,9].

The strength of linear shims (X, Y, Z) is not a problem, because powerful gradient coils and gradient amplifiers are preferentially used for 1st order shim corrections in MR scanners. Therefore, limitations in the shim strength are more an issue with higher-order shim coils, usually the strength of the 2nd order shim system. The maximum strength of a shim coil depends on its inductance and the maximum current of the corresponding shim driver. The higher shim coil inductance requires less current to generate a specific field, however, this may result in stronger coupling to the gradient coil. Which means that the gradient switching can negatively influence the stability of the shim current. Shim coils with lower inductance may exhibit decreased coupling with the gradient coil but require more current to generate a given field, which can result in difficulties with sufficient heat extraction from the shim coil.

MR spectroscopic imaging (MRSI) requires a highly homogeneous B_0 field within a large region of the brain, typically across a whole slice through the brain or possibly within the entire brain volume. Due to substantial B_0 field distortions at high magnetic fields, adjustment of an acceptable B_0 homogeneity in large volumes requires shim corrections up to the 3rd order and probably some 4th-order terms, such as Z4, might be necessary [8]. Despite all this effort, complete elimination of small local deviations from the B_0 field uniformity is very difficult. On the other hand, single voxel MRS requires adjustment of the B_0 field homogeneity in a relatively small volume, which is technically much easier. In addition, the B_0 field distortions can be very well approximated using only 1st and 2nd order shim terms, which is the most common shim coil configuration on MR scanners. High levels of the B_0 uniformity can be achieved in small volumes selected for a single voxel MRS by a fine adjustment of all 1^{st} and 2^{nd} order shims. Resulting spectral linewidths are determined only by the intrinsic parameters of the tissue (relaxation parameters of detected molecules and microscopic variations in tissue susceptibility). Precise B₀ field mapping in small volumes requires high spatial sampling, which is much easier and faster to achieve using methods based on mapping along projections, such as FASTMAP [12,13] than by using techniques based on 3D B₀ field mapping [8,9].

The recommended strengths of the 2nd-order shim system for the human brain MRS at 7T are 20 – 40 Hz/cm² (0.48 – 0.96 μ T/cm²) for XZ, YZ, Z2 shims and 10 Hz/cm² (0.24 μ T/cm²) for XY and X2Y2 shims [16,17]. The smaller the measured object and the radius of the air/tissue interface, the stronger are the B₀ field local gradients. This means that the compensation of B₀ field distortions in the brain of rodents requires significantly stronger 2nd-order shims, approximately by two orders of magnitude relative to human applications. In addition, shim requirements are substantially higher in mice relative to rats. For example, recommended lowest values for the mouse brain MRS at 9.4T are the following: 2000 Hz/cm² (48 μ T/cm²) for XZ, YZ, Z2 and 1000 Hz/cm² (24 μ T/cm²) for XY and X2Y2 shims [18].

FASTMAP shimming [12,13] is very robust and fully automated, which guarantees that the resulting spectral resolution is highly reproducible. For example, the water signal linewidth 10.5 ± 0.3 Hz was achieved in mouse striatum at 9.4T (n = 50). FASTMAP is a projection method, which means that the assessment of local variations in B₀ is based on assumption that the magnetization dephasing occurs only in one direction. In other words, the thickness on the excited bar must be significantly smaller than the length of the evaluated phase profile. The best shimming quality with FASTMAP is usually achieved after three or four iterations. Time requirements for FASTMAP shimming are minimal, because four iterations with interleaved update of the resonance frequency require less than two minutes. It is important to mention that in addition to shimming, the final spectral linewidth after averaging is influenced by other factors, such as the B_0 field drift as well as frequency and phase variations resulting from physiological motion. Therefore, single scan averaging is optimal if there is enough SNR after one scan to perform frequency and phase correction. If the SNR of single scan data is not high enough then averaging in blocks is recommended. The ability to resolve the resonances of creatine (3.91 ppm) and phosphocreatine (3.93 ppm) at 9.4T is an excellent indicator that near optimal shimming was achieved, as shown in the figure.

In vivo ¹H MR spectrum measured from the rat striatum at 9.4T. STEAM, TE = 2 ms, TR = 5 s, VOI = 10 μ I, FASTMAP shimming, rat age = 3 weeks.

To take advantage of increased chemical dispersion at high magnetic fields, optimal shimming is absolutely essential. High quality shimming enables reliable quantification of a broad range of brain metabolites, the so called neurochemical profile. Neurochemical profiles were measured non-invasively in rats [19,20], mice [18], monkeys [21], during brain develop-

ment [22], in iron deficiency studies [23], after transient cerebral ischemia [24,25], in transgenic mouse models [26], etc. Neurochemical profiles of the human brain have also been measured at 3T, 4T and 7T [27,17].

In conclusion, the B_0 shimming is crucial for high performance in vivo ¹H MRS. Efficient shimming methods are available for a routine use. For a successful shimming it is important to guarantee that the strength of the higher order shim system is strong enough to compensate induced B_0 field distortions.

References

- 1. Avdievich NI, Pan JW, Baehring JM, Spencer DD, Hetherington HP. Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magn Reson Med 2009;62:17-25.
- Hsu JJ, Glover GH. Mitigation of susceptibility-induced signal loss in neuroimaging using localized shim coils. Magn Reson Med 2005;53:243-248.
- 3. Juchem C, Nixon TW, McIntyre S, Rothman DL, de Graaf RA. Magnetic field homogenization of the human prefrontal cortex with a set of localized electrical coils. Magn Reson Med 2009.
- Juchem C, Muller-Bierl B, Schick F, Logothetis NK, Pfeuffer J. Combined passive and active shimming for in vivo MR spectroscopy at high magnetic fields. J Magn Reson 2006;183:278-289.
- Osterbauer RA, Wilson JL, Calvert GA, Jezzard P. Physical and physiological consequences of passive intra-oral shimming. NeuroImage 2006;29:245-253.
- Wilson JL, Jenkinson M, Jezzard P. Optimization of static field homogeneity in human brain using diamagnetic passive shims. Magn Reson Med 2002;48:906-914.
- 7. Koch KM, McIntyre S, Nixon TW, Rothman DL, de Graaf RA. Dynamic shim updating on the human brain. J Magn Reson 2006;180:286-296.
- Hetherington HP, Chu WJ, Gonen O, Pan JW. Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magn Reson Med 2006;56:26-33.
- 9. Miyasaka N, Takahashi K, Hetherington HP. Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T. Magn Reson Med 2006;55:198-202.
- 10. Schneider E, Glover G. Rapid in vivo proton shimming. Magn Reson Med 1991;18:335-347.
- 11. Chen Z, Li SS, Yang J, Letizia D, Shen J. Measurement and automatic correction of high-order B0 inhomogeneity in the rat brain at 11.7 Tesla. Magn Reson Imaging 2004;22:835-842.
- 12. Gruetter R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 1993;29:804-811.
- 13. Gruetter R, Tkac I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 2000;43:319-323.
- 14. Shen J, Rothman DL, Hetherington HP, Pan JW. Linear projection method for automatic slice shimming. Magn Reson Med 1999;42:1082-1088.
- 15. Zhang Y, Li S, Shen J. Automatic high-order shimming using parallel columns mapping (PACMAP). Magn Reson Med 2009;62:1073-1079.
- Tkac I, Gruetter R. Methodology of 1H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 2005;29:139-157.
- 17. Tkac I, Oz G, Adriany G, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T. Magn Reson Med 2009.
- Tkac I, Henry PG, Andersen P, Keene CD, Low WC, Gruetter R. Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 2004;52:478-484.
- 19. Mlynarik V, Cudalbu C, Xin L, Gruetter R. 1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile. J Magn Reson 2008;194:163-168.
- 20. Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 1999;141:104-120.
- Juchem C, Logothetis NK, Pfeuffer J. 1H-MRS of the macaque monkey primary visual cortex at 7 T: strategies and pitfalls of shimming at the brain surface. Magn Reson Imaging 2007;25:902-912.
- Tkac I, Rao R, Georgieff MK, Gruetter R. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med 2003;50:24-32.
- 23. Ward KL, Tkac I, Jing Y, Felt B, Beard J, Connor J, Schallert T, Georgieff MK, Rao R. Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr 2007;137:1043-1049.
- 24. Lei H, Berthet C, Hirt L, Gruetter R. Evolution of the neurochemical profile after transient focal cerebral ischemia in the mouse brain. J Cereb Blood Flow Metab 2009;29:811-819.
- Rao R, Tkac I, Townsend EL, Ennis K, Gruetter R, Georgieff MK. Perinatal iron deficiency predisposes the developing rat hippocampus to greater injury from mild to moderate hypoxia-ischemia. J Cereb Blood Flow Metab 2007;27:729-740.
- Tkac I, Dubinsky JM, Keene CD, Gruetter R, Low WC. Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 2007;100:1397-1406.
- 27. Mekle R, Mlynarik V, Gambarota G, Hergt M, Krueger G, Gruetter R. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med 2009;61:1279-1285.